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Abstract This is a review paper that covers some recent results on the behavior of the
clustering coefficient in preferential attachment networks and scale-free networks in
general. The paper focuses on general approaches to network science. In other words,
instead of discussing different fully specified random graph models, we describe some
generic results which hold for classes ofmodels. Namely, we first discuss a generalized
class of preferential attachment models which includes many classical models. It turns
out that some properties can be analyzed for the whole class without specifying the
model. Such properties are the degree distribution and the global and average local
clustering coefficients. Finally, we discuss some surprising results on the behavior of
the global clustering coefficient in scale-free networks. Here we do not assume any
underlying model.

Keywords Networks · Random graph models · Preferential attachment ·
Power-law degree distribution · Clustering coefficient

1 Introduction

Many social, biological, and information systems can be represented by networks,
whose vertices are items and links are relations between these items [1,2,7,10].
That is why the evolution of complex networks attracted a lot of attention in recent
years [16,33]. In particular, numerous random graph models have been proposed to
reflect andpredict important quantitative and topological aspects of growing real-world
networks. Such models are used in many fields: experimental physics, bioinformatics,
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information retrieval, data mining, etc. An extensive review can be found elsewhere
(e.g., see [1,7,8]).

It turns out that many real-world networks of diverse nature have some typical
properties: small diameter, power-law degree distribution, high clustering, and others
[22,31–33,38,43]. Probably the most extensively studied property of networks is their
vertex degree distribution. For the majority of studied real-world networks, the portion
of vertices of degree d was observed to decrease as d−γ−1, usually with 1 < γ < 2 [3–
5,7,13,21]. Such networks are often called scale-free. Sometimes, the cumulative
degree distribution is considered: the portion of vertices of degree greater than d
decreases as d−γ . In this paper, the parameter γ corresponds to the slope of cumulative
degree distribution.

Another important characteristic of a network is its clustering coefficient, ameasure
capturing the tendency of a network to form clusters, densely interconnected sets of
vertices. Several definitions of the clustering coefficient can be found in the literature
[8]. In this paper, we consider the most popular two: the global clustering coefficient
and the average local clustering coefficient. The global clustering coefficient C1(G)

is the ratio of three times the number of triangles to the number of pairs of adjacent
edges in G. The average local clustering coefficient is defined as follows: C2(G) =
1
n

∑n
i=1 C(i), where C(i) = T i

Pi
2
is the local clustering coefficient for a vertex i , T i is

the number of edges between the neighbors of the vertex i , and Pi
2 is the number of pairs

of neighbors. It is believed that for many real-world networks both the average local
and the global clustering coefficients tend to a non-zero limit as the networks become
large. Indeed, in many observed networks the values of both clustering coefficients
are considerably high [33].

This paper reviews several recent works in which the above properties—the degree
distribution and the clustering coefficient—are analyzed. The goal of the paper is to
cover some general approaches to the analysis of these properties. We would like
to remark that a huge number of different models have been proposed recently and
covering all of thesemodels is outside the scope of this paper. However, we do describe
several classical models as an illustration to a generalized approach.

The most well-known approach to the modeling of complex networks is the prefer-
ential attachment. The main idea of this approach is that the graph is constructed step
by step and at each time step a new vertex is added to the graph and is joined to m
different vertices already existing in the graph chosen with probabilities proportional
to their degrees. Many different models are based on the idea of preferential attach-
ment: LCD [9], Buckley and Osthus [14], Holme and Kim [25], RAN [44], and many
others. Preferential attachment is a natural process which allows to obtain a graph with
a power-law degree distribution. We discuss the preferential attachment approach and
several models based on this approach in Sect. 2.

Then, we present a general framework for analyzing preferential attachmentmodels
which was first proposed in [37]. The authors introduced a class of models (PA-class)
defined in terms of constraints that are sufficient for the study of the degree distribution.
The PA-class includes many classical preferential attachment models. We discuss this
class and the degree distribution for the models of this class in Sect. 3.
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In turned out that an additional constraint on the models in the PA-class allows to
analyze the behavior of both average local and global clustering coefficients in this
class (see Sect. 4). Moreover, if the parameter of the cumulative degree distribution
γ belongs to (1, 2), then the global clustering coefficient tends to zero for any model
from the PA-class [37]. In Sect. 5, we present a result which further generalizes this
observation [36]: namely, for any sequence of graphs with a power-law degree dis-
tributions with a parameter γ ∈ (1, 2) the global clustering coefficient tends to zero.
This result is quite surprising, since there is a common belief that for many real-world
networks both the average local and the global clustering coefficients tend to a non-
zero limit as the networks become large. In addition to the upper bound for the global
clustering coefficient, in Sect. 5 we also present an algorithmwhich allows to construct
a graph with nearly maximum (up to no(1) multiplier) clustering coefficient given a
power-law degree distribution.

Note that we are not aiming at providing the complete proofs for all the results
covered in this paper. However, we usually describe the main ideas and tools. In some
cases, if a proof is easy to follow, we also provide a sketch of the proof.

2 Preferential attachment models

In 1999, Barabási and Albert observed [3] that the degree distribution of the World
Wide Web follows a power law with a parameter ∼2.1 (or 1.1 for the cumulative
distribution). As a possible explanation for this phenomenon, they proposed a graph
construction stochastic process governed by the preferential attachment. At each time
step of the process, a new vertex is added to the graph and is joined to m different
vertices already existing in the graph chosen with probabilities proportional to their
degrees.

Denote by dnv the degree of a vertex v in the growing graph at time n. At each step
m edges are added, so we have

∑
v d

n
v = 2mn. This observation and the preferential

attachment rule imply that

P(dn+1
v = d + 1 | dnv = d) = d

2n
. (1)

Note that the condition (1) on the attachment probability does not specify the distrib-
ution of m vertices to be joined to, in particular their dependence. Therefore, it would
be more accurate to say that Barabási and Albert proposed not a single model, but a
class of models. As it was shown later by Bollobás and Riordan, there is a whole range
of models that fit the Barabási–Albert description, but possess very different behavior.

Theorem 1 (Bollobás and Riordan [8]) Let f (n), n ≥ 2, be any integer valued func-
tion with f (2) = 0 and f (n) ≤ f (n + 1) ≤ f (n) + 1 for every n ≥ 2, such that
f (n) → ∞ as n → ∞. Then there is a random graph process T (n) satisfying (1) such
that, with probability 1, T (n) has exactly f (n) triangles for all sufficiently large n.

Further in this section, we review several classical models based on the idea of
preferential attachment. In the next section, we present an approach which allows to
generalize all these models.
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2.1 LCD-model

In [9], Bollobás and Riordan proposed a precisely defined model of the Barabási–
Albert type, known as the LCD-model. The graph is constructed according to the
following procedure. Let n be a number of vertices in our graph and m be a fixed
positive integer parameter. We begin with the case m = 1. We inductively construct
a random graph Gn

1. Start with G1
1—the graph with one vertex and one loop. Assume

that we already constructed a graph Gt−1
1 . At the next step we add one vertex t and

one edge between vertices t and i , where i is chosen randomly with the following
probability:

P(i = s) =
{
dt−1
s /(2t − 1) if 1 ≤ s ≤ t − 1,

1/(2t − 1) if s = t.
(2)

In other words, the probability that a new vertex will be connected to a vertex i is
proportional to the current degree of i . To obtain Gn

m with m > 1, we first construct
Gmn

1 . Then we identify the vertices 1, . . . ,m to form the first vertex; we identify the
vertices m + 1, . . . , 2m to form the second vertex; and so on. After this procedure,
edges from Gn

1 connect “big” vertices in Gn
m . According to this definition multiple

edges and loops may occur.

In [9], Bollobás and Riordan proved that for d < n
1
15 the portion of vertices of

degree d asymptotically almost surely obeys the power law with the parameter 3. In
[23], Grechnikov improved this result by removing the restriction on d.

It was also shown that the expected global clustering coefficient in the LCD-model

is asymptotically proportional to (log n)2

n and therefore tends to zero as the graph
grows [8].

2.2 Buckley–Osthus model

One obtains a natural generalization of the LCD-model, requiring the probability
of attachment to a vertex v to be proportional to dnv + mβ, where β is a constant
representing the initial attractiveness of a vertex [17,18]. Buckley and Osthus [14]
proposed a precisely defined model with a nonnegative integer β. Their model is
similar to the LCD-model, but Eq. (2) should be replaced by

P(i = s) =
⎧
⎨

⎩

dt−1
s +β

(β+2)t−1 if 1 ≤ s ≤ t − 1,
β+1

(β+2)t−1 if s = t.

Móri [29] proposed a similar model which generalizes the Buckley–Osthus model
to real β > −1. For both models, the degree distribution was shown to follow the
power law with the parameter 3 + β in the range of small degrees [14,24,30].

The result of Eggemann and Noble [19] implies that the expected global clustering
coefficient in the Móri model with β > 0 is asymptotically proportional to log n

n .
For β = 0, the Móri model is almost identical to the LCD-model. Therefore, the
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authors of [19] emphasize the confusing difference between the clustering coefficients
( (log n)2

n versus log n
n

)
.

2.3 Holme–Kim model

The main drawback of the described preferential attachment models is an unrealistic
behavior of the clustering coefficient. In fact, for all discussed models the clustering
coefficient tends to zero as a graph grows, while in many real-world networks the
clustering coefficient is approximately a constant [7].

A model with an asymptotically constant average local clustering coefficient was
proposed by Holme and Kim [25]. The idea is to mix preferential attachment steps
with steps of triad formation. Namely, when a new vertex appears, we add m edges in
m steps. There are two types of steps:

• Preferential attachment (PA): an edge is attached to an existing vertex with the
probability proportional to its degree, as in the LCD-model.

• Triad formation (TF): if an edge between v and w was added in the previous PA
step, then we add one more edge from v to a randomly chosen neighbor of w. If
there remains no pair to connect, i.e., if all neighbors of w were already connected
to v, do a PA step instead.

When a vertex v with m edges is added to the existing graph, we first perform one
PA step, and then perform a TF step with the probability Pt or a PA step with the
probability 1 − Pt .

This model allows to tune the clustering coefficient by varying the probability of
the triad formation step Pt . However, experiments and empirical analysis [25] show
that the degree distribution in this model obeys the power law with the fixed parameter
close to 3, which does not suit most real networks. In addition, as we demonstrate in
Sect. 3, while the average local clustering coefficient for this model does not tend to
zero as a graph grows, the global clustering coefficient still does.

2.4 RAN model

The randomApollonian network model (RAN) proposed in [44] is another interesting
example of a Barabási–Albert type model with an asymptotically constant average
local clustering coefficient. This model is based on a geometrical representation of a
graph and it allows to construct a planar network. In order to construct a graph, one
starts with a triangle (three vertices and three edges). Then, at each time step, a triangle
(in the current graph drawn on a plane) is randomly selected, a new vertex is added
inside this triangle and linked to the three vertices of this triangle.

This model allows to get a constant average local clustering coefficient and the
degree distribution in this model obeys the power law with the parameter 3 [44].

There are many other models, not mentioned here, that are based on the idea of
preferential attachment. For some of these models similar theorems on the degree
distribution and the clustering coefficient are proved. The methods used in the proofs
are also very similar. In the next section, we consider an approach [37] which provides
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a general framework for these models. Namely, we discuss a class of preferential
attachment models that generalizes the models mentioned above, as well as many
others.

3 Generalized preferential attachment

In this section, we present a generic approach to preferential attachment proposed
in [37]. First, we formally define the PA-class of models; then, we discuss the degree
distribution in these models.

3.1 Definition

Let us define a class of preferential attachment randomgraphmodelswhich generalizes
several models discussed in the previous section.

Let Gn
m (n ≥ n0) be a graph with n vertices {1, . . . , n} and mn edges obtained as

a result of the following process. We start at the time n0 from an arbitrary graph Gn0
m

with n0 vertices and mn0 edges. On the (n + 1)-th step (n ≥ n0), we make the graph
Gn+1

m from Gn
m by adding a new vertex n + 1 and m edges connecting this vertex

to some m vertices from the set {1, . . . , n, n + 1}. Recall that we denote by dnv the
degree of a vertex v in Gn

m . If for some constants A and B the following conditions
are satisfied

P(dn+1
v = dnv | Gn

m) = 1 − A
dnv
n

− B
1

n
+ O

((
dnv

)2

n2

)

, 1 ≤ v ≤ n, (3)

P(dn+1
v = dnv + 1 | Gn

m) = A
dnv
n

+ B
1

n
+ O

((
dnv

)2

n2

)

, 1 ≤ v ≤ n, (4)

P(dn+1
v = dnv + j | Gn

m) = O

((
dnv

)2

n2

)

, 2 ≤ j ≤ m, 1 ≤ v ≤ n, (5)

P(dn+1
n+1 = m + j) = O

(
1

n

)

, 1 ≤ j ≤ m, (6)

then the random graph process Gn
m is a model from the PA-class. Here, as in [37], we

require 2mA + B = m and 0 ≤ A ≤ 1.
Note that even if we fix A and m, we still do not specify a concrete procedure

for constructing a network, since we do not completely define the joint distribution
of m endpoints of new edges. Therefore, there is a range of models possessing very
different properties and satisfying the conditions (3)–(6). For example, the LCD, the
Holme–Kim, and the RAN models belong to the PA-class with A = 1/2 and B = 0.
The Buckley–Osthus (Móri) model also belongs to the PA-class with A = 1

2+β
and

B = mβ
2+β

.
It turns out, that some rigorous results can be proven for the whole PA-class without

specifying a concrete model. For example, we can show a power-law degree distribu-
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tion (Sect. 3.2). It is also possible to analyze both global and average local clustering
coefficients (Sect. 4). Directions for future research include analyzing the maximum
degree dmax and the average degree of the nearest neighbors of vertices with degree
d [38], denoted as knn(d), in the whole PA-class. It is also worth mentioning that by
the definition all models from the PA-class are m-degenerate. Constant degeneracy
implies, for example, that maximum clique problem can efficiently be solved for all
such graphs [11].

3.2 Power-law degree distribution

Even though the distribution of vertices a new vertex is going to be connected to is
not fully specified, it is still possible to analyze the degree distribution of all models
in the PA-class.

By Nn(d) denote the number of vertices of a given degree d in Gn
m . The following

result on the expectation of Nn(d) is proven in [37].

Theorem 2 (Ostroumova et al. [37])For every d ≥ mwehaveENn(d) = c(m, d)(n+
O(d2+ 1

A )), where

c(m, d) = �
(
d + B

A

)
�

(
m + B+1

A

)

A�
(
d + B+A+1

A

)
�

(
m + B

A

)
d→∞∼ �

(
m + B+1

A

)
d−1− 1

A

A�
(
m + B

A

)

and �(x) is the gamma function.

Theorem 2 can be proven by induction on d and n. Given a graph Gn
m , we can

express the conditional expectation for the number of vertices of degree d in Gn+1
m

(i.e., E(Nn+1(d) | Gn
m)) in terms of Nn(d), Nn(d −1), . . . , Nn(d −m). Here we only

need the fact that the probability of having an edge between the vertex n + 1 and a
vertex v depends on the degree of v (see Eq. (3)). Using the law of total expectation, we
can obtain the recurrent relation for ENn+1(d) and prove the statement of Theorem 2
by induction.

It can also be shown that the number of vertices of a given degree d is highly
concentrated around its expectation.

Theorem 3 (Ostroumova et al. [37]) For every model from the PA-class and for every
d = d(n) we have

P
(|Nn(d) − ENn(d)| ≥ d

√
n log n

) = O(n− log n).

Therefore, for any δ > 0 there exists a function ϕ(n) = o(1) such that

lim
n→∞P(∃ d ≤ n

A−δ
4A+2 : |Nn(d) − ENn(d)| ≥ ϕ(n)ENn(d)) = 0.

The Azuma–Hoeffding inequality can be used to prove this theorem.
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Theorem 4 (Azuma and Hoeffding) Let (Xi )
n
i=0 be a martingale such that |Xi −

Xi−1| ≤ ci for any 1 ≤ i ≤ n. Then P (|Xn − X0| ≥ x) ≤ 2e
− x2

2
∑n

i=1 c
2
i for any x > 0.

In order to apply this inequality and prove Theorem 3, one can consider the mar-
tingale Xi (d) = E(Nn(d) | Gi

m), i = 0, . . . , n. Note that X0(d) = ENn(d) and
Xn(d) = Nn(d). It remains to estimate the difference |Xi (d) − Xi−1(d)|. The upper
bound for |Xi (d) − Xi−1(d)| can be proven by induction on d and n. The complete
proofs of Theorems 2 and 3 can be found in [37].

Theorems 2 and 3 imply that the degree distribution inGn
m follows (asymptotically)

the power law with the parameter 1+ 1
A . Recall that in this case the cumulative degree

distribution follows the power law with the parameter γ = 1
A .

4 Clustering coefficient in PA-class

In the previous section, we described a general class of preferential attachment models
and discussed the degree distribution in this class. The next natural question is: can
we also say something about the clustering coefficient in this class? This question was
discussed in [26,37].

Recall that there are two well-known definitions of the clustering coefficient of a
graphG. The global clustering coefficientC1(G) is the ratio of three times the number
of triangles to the number of pairs of adjacent edges inG. The average local clustering

coefficient is C2(G) = 1
n

∑n
i=1 C(i), where C(i) = T i

Pi
2
is the local clustering coeffi-

cient for a vertex i , T i is the number of edges between the neighbors of the vertex i ,
and Pi

2 is the number of pairs of neighbors.
Some known results on the behavior of the clustering coefficient for classical pref-

erential attachment models were mentioned in Sect. 2. In this section, we cover an
approach which generalizes these results.

4.1 T-subclass

It turns out that models from the PA-class may have very different clustering coeffi-
cients even for fixed parameters A andm. Therefore, in order to be able to analyze the
behavior of the clustering coefficients, we have to add some additional constraint.

In [37], a T-subclass of the PA-class was introduced. In order to belong to the
T-subclass, a model has to satisfy the following property in addition to (3)–(6):

P(dn+1
i = dni + 1, dn+1

j = dnj + 1 | Gn
m) = ei j

D

mn
+ O

(
dni d

n
j

n2

)

. (7)

Here ei j is the number of edges between vertices i and j inGn
m and D is a non-negative

constant. Note that this property still does not define the correlation between m edges
completely.
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All preferential attachment models described in Sect. 2 belong to the T-subclass:
the LCD and the Buckley–Osthus models with D = 0, the Holme–Kim model with
D = Pt · (m − 1), and the RAN model with D = 3.

In Sects. 4.2 and 4.3, we discuss the behavior of global and average local clustering
coefficients in the T-subclass. These results generalize several known ones indepen-
dently obtained for the LCD, the Buckley–Osthus, the Holme–Kim, and the RAN
models.

4.2 Global clustering coefficient

In this section, we discuss the global clustering coefficient for the models from the
T-subclass. Recall that C1(Gn

m) is the ratio of three times the number of triangles to
the number of pairs of adjacent edges in Gn

m . Therefore, we first study the random
variable P2(n) which is equal to the number of P2’s (pairs of adjacent edges) in a
random graph Gn

m .

Theorem 5 (Ostroumova et al. [37]) For every model from the PA-class and for any
ε > 0, we have

(1) if 2A < 1, then whp (1 − ε)
(
2m(A + B) + m(m−1)

2

)
n

1−2A ≤ P2(n)

≤ (1 + ε)
(
2m(A + B) + m(m−1)

2

)
n

1−2A ;
(2) if 2A = 1, then whp (1 − ε)

(
2m(A + B) + m(m−1)

2

)
n log(n) ≤ P2(n)

≤ (1 + ε)
(
2m(A + B) + m(m−1)

2

)
n log(n);

(3) if 2A > 1, then whp n2A−ε ≤ P2(n) ≤ n2A+ε.

Note that Theorem 5 does not require the condition (7) to be satisfied. Also,
it is worth noting that the value P2(n) in scale-free graphs is usually determined
by the power-law exponent γ . Indeed, we have P2(n) = ∑dmax

d=1 Nn(d)
d(d−1)

2 ∝
∑dmax

d=1 nd
1−γ , where dmax is the maximum degree of a vertex. Therefore, if γ > 2,

then P2(n) is linear in n. However, if γ ≤ 2, then P2(n) is superlinear.
Next, we look at the random variable T (n)which is equal to the number of triangles

in Gn
m . Note that in any model from the PA-class we have T (n) = O(n) since at each

step we add at most m(m−1)
2 triangles. If we combine this fact with the previous

observation for P2(n), we see that if γ ≤ 2, then in any preferential attachment model
(in which out-degrees of vertices are bounded) the global clustering coefficient tends
to zero as n grows.

Theorem 6 (Ostroumova et al. [37]) Let Gn
m satisfy the condition (7) with D > 0.

Then for any ε > 0 whp (1 − ε) D n ≤ T (n) ≤ (1 + ε) D n.

The proof of this theorem is straightforward. The expectation of the number of triangles

we add at each step is D+ o(1) (see Eq. (7)). The fact that the sum of O

(
dni d

n
j

n2

)

over

all adjacent vertices is o(1) can be shown by induction using the conditions (3)–(6).
It is also possible to first prove that the maximum degree grows as nA and then use
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this fact to estimate the sum of the error terms. Therefore, ET (n) = D n + o(n). The
Azuma–Hoeffding inequality can be used to prove concentration.

As a consequence of Theorems 5 and 6, we get the following result on the global
clustering coefficient C1(Gn

m).

Theorem 7 (Ostroumova et al. [37]) Let Gn
m belong to the T-subclass with D > 0.

Fix any ε > 0, then

(1) If 2A < 1, then whp 6(1−2A)D−ε
m(4(A+B)+m−1) ≤ C1(Gn

m) ≤ 6(1−2A)D+ε
m(4(A+B)+m−1) ;

(2) If 2A = 1, then whp 6D−ε
m(4(A+B)+m−1) log n ≤ C1(Gn

m) ≤ 6D+ε
m(4(A+B)+m−1) log n ;

(3) If 2A > 1, then whp n1−2A−ε ≤ C1(Gn
m) ≤ n1−2A+ε.

Note that in some cases (2A ≥ 1, i.e., γ ≤ 2) the global clustering coefficient
C1(Gn

m) tends to zero (for any D) as the number of vertices grows. A generalization
of the obtained result to scale-free graphs will be discussed in Sect. 5.

In the next section, we look at the average local clustering coefficient and show that
it behaves differently.

4.3 Average local clustering coefficient

In this section, we analyze the behavior of the average local clustering coefficient
C2(Gn

m). First,we can easily show thatC2(Gn
m)does not tend to zero if the condition (7)

holds with D > 0. From Theorems 2 and 3 it follows that whp the number of vertices
of degree m in Gn

m is greater than cn for some positive constant c. The expectation of
the number of triangles we add at each step is D + o(1). Therefore, whp

C2(G
n
m) ≥ 1

n

∑

i :deg(i)=m

C(i) ≥ 2cD

m(m + 1)
.

So, if D > 0, then the local clustering coefficient does not tend to zero, as it is observed
in real networks.

In [26] the local clustering coefficient was studied deeper. Namely, the authors
analyze the function C2(d)—the local clustering coefficient for the vertices of degree
d—in the PA-class of models.

It was previously shown that in real-world networks C2(d) usually decreases as
d−ψ with some parameter ψ > 0 [15,40,42]. For some networks, C2(d) scales as
d−1 [27,39]. It turns out that in all models of the T-subclass the local clustering
coefficient C2(d) asymptotically behaves as 2D

Am · d−1.
Let Tn(d) be the number of triangles on the vertices of degree d in Gn

m (i.e., the
number of edges between the neighbors of the vertices of degree d). Then, the average
local clustering coefficient for the vertices of degree d is defined as

C2(d) = Tn(d)

Nn(d)
d(d−1)

2

. (8)

In other words, C2(d) is the local clustering coefficient averaged over all vertices of
degree d.
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In Sect. 3.2, we already discussed the asymptotic behavior of Nn(d). Therefore,
it remains to estimate Tn(d). The following theorem on the expectation of Tn(d) is
proven in [26].

Theorem 8 (Krot et al. [26]) Let Gn
m belong to the T-subclass with D > 0. Then

(1) if 2A < 1, then ETn(d) = K (d)(n + O(d2+ 1
A ));

(2) if 2A = 1, then ETn(d) = K (d)(n + O(d2+ 1
A · log(n)));

(3) if 2A > 1, then ETn(d) = K (d)(n + O(d2+ 1
A · n2A−1));

where K (d) = c(m, d)
(
D + D

m · ∑d−1
i=m

i
Ai+B

)
d→∞∼ D

Am · �
(
m+ B+1

A

)

A�
(
m+ B

A

) · d− 1
A .

In addition, Tn(d) is highly concentrated around its expectation.

Theorem 9 (Krot et al. [26]) Let Gn
m belong to the T-subclass with D > 0. Then for

every d = d(n)

(1) if 2A < 1: P(|Tn(d) − ETn(d)| ≥ d2
√
n log n) = O(n− log n);

(2) if 2A = 1: P(|Tn(d) − ETn(d)| ≥ d2
√
n log2 n) = O(n− log n);

(3) if 2A > 1: P(|Tn(d) − ETn(d)| ≥ d2 n2A− 1
2 log n) = O(n− log n).

Consequently, for any δ > 0 there exists a function ϕ(n) = o(1) such that

(1) if 2A ≤ 1: limn→∞ P
(
∃ d ≤ n

A−δ
4A+2 : |Tn(d) − ETn(d)| ≥ ϕ(n)ETn(d)

)
= 0;

(2) if 2A > 1: limn→∞ P
(
∃ d ≤ n

A(3−4A)−δ
4A+2 : |Tn(d) − ETn(d)| ≥ ϕ(n)ETn(d)

)
=

0.

As a corollary of Theorems 2, 3, 8, and 9, we get the following result on the average
local clustering coefficient C2(d) for the vertices of degree d.

Theorem 10 (Krot et al. [26]) Let Gn
m belong to the T-subclass of the PA-class. Then

for any δ > 0 there exists a function ϕ(n) = o(1) such that

(1) if 2A ≤ 1: limn→∞ P
(

∃ d ≤ n
A−δ
4A+2 :

∣
∣
∣
∣C2(d) − K (d)

(d2) c(m,d)

∣
∣
∣
∣ ≥ ϕ(n)

d

)

= 0;

(2) if 2A > 1: limn→∞ P
(

∃ d ≤ n
A(3−4A)−δ

4A+2 :
∣
∣
∣
∣C2(d) − K (d)

(d2) c(m,d)

∣
∣
∣
∣ ≥ ϕ(n)

d

)

= 0.

Note that K (d)

(d2) c(m,d)
= 2D

d (d−1)m

(
m + ∑d−1

i=m
i

Ai+B

)
d→∞∼ 2D

mA · d−1.

Finally, despite the fact that the T-subclass generalizes many different models, it
is possible to analyze the local clustering coefficient for all these models. It turns out
that C2(d) asymptotically decreases as 2D

Am · d−1. In particular, this result implies that
one cannot change the exponent −1 by varying the parameters A, D, and m. This
basically means that preferential attachment models in general are not flexible enough
to model C(d) ∝ d−ψ with ψ �= 1.

There is also a connection between the obtained result and the notion of weak and
strong transitivity introduced in [40]. It was shown in [41] that percolation properties
of a network are defined by the type (weak or strong) of its connectivity. Interestingly,
a model from the T-subclass can belong to either weak or strong transitivity class: if
2D < Am, then we obtain the weak transitivity; if 2D > Am, then we obtain the
strong transitivity.
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5 Global clustering coefficient in scale-free networks

5.1 Motivation

While the degree distribution of preferential attachment models allows adjustment to
reality, the clustering coefficient is difficult to model in some cases. For most real-
world networks the parameter γ of their cumulative degree distribution belongs to the
interval (1, 2). As we showed in Sect. 4.2, once γ < 2 in a preferential attachment
model, the global clustering coefficient decreases as the graph grows, which does
not correspond to the majority of real-world networks [33]. The main reason of this
decrease is that the number of edges added at each step is a constant and consequently
the number of triangles can grow only linearly with the number of vertices n, while
the number of pairs of adjacent edges grows as n2/γ . Not only preferential attachment
models suffer from this problem: to the best of our knowledge, in the literature there
are nomodels of scale-free networkswith an infinite variance of the degree distribution
and with an asymptotically constant global clustering coefficient.

In this section, we address the above problem. In particular, we explain why such
a model—one with a power-law degree distribution, with γ < 2, and with an asymp-
totically constant global clustering coefficient—cannot exist. In order to do this, we
consider a sequence of graphs with degree distributions following a regularly varying
distribution F . We assume that the degrees of the vertices are randomly generated
according to F . Then, for a given outcome of the degree sequence, a graph can be
built in any arbitrary way. We show that if a simple graph has a power-law degree dis-
tribution with an infinite variance, then the global clustering coefficient for any such
sequence of graphs tends to zero with high probability. Note that we do not assume
any random graph model here.

In addition to the upper bound obtained for the global clustering coefficient, we
also present an algorithm which allows to construct graphs with nearly maximum (up
to no(1) multiplier) clustering coefficient for the considered sequence of graphs.

On the contrary, for weighted graphs, the constant global clustering coefficient can
be obtained even for the case of an infinite variance of the degree distribution.

This section covers the results presented in [35,36].

5.2 Scale-free graphs

Let us consider a sequence of graphs {Gn}. Each graphGn has n vertices.As in [35,36],
we assume that the degrees of the vertices are independent random variables following
a regularly varying distribution with a cumulative distribution function F satisfying

1 − F(x) = L(x)x−γ , x > 0, (9)

where L(·) is a slowly varying function, that is, for any fixed constant t > 0

lim
x→∞

L(t x)

L(x)
= 1.
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There is an additional obvious restriction on the function L(·): the function 1 −
L(x)x−γ must be a cumulative distribution function of a random variable taking
positive integer values with probability 1.

Note that Eq. (9) generalizes the power-law distribution and describes a broad class
of heavy-tailed distributions. Further by ξ, ξ1, ξ2, . . .we denote random variables with
the distribution F . Note that for any α < γ the moment Eξα is finite.

Models with γ > 2 and with the global clustering coefficient tending to some
positive constantwere alreadyproposed (see, e.g., [37]). Therefore, furtherwe consider
only the most tricky case 1 < γ < 2.

Obviously, we can construct a graph with a given degree distribution only if the
sum of all degrees is even. This problem is easy to solve: we can either regenerate
the degrees until their sum is even or we can add 1 to the last variable if their sum is
odd [12]. As in [35], we choose the second option: if

∑n
i=1 ξi is odd, then we replace

ξn by ξn + 1. It is easy to see that this modification does not change any of obtained
results, therefore, further we do not focus on the evenness.

Further in this section, we state that some results hold with high probability. Let us
emphasize that the probability here only refers to the randomness defining the degree
sequence, and the obtained bounds, e.g., O(n−α) with some α > 0, hold uniformly
with respect to any sequence of graphs {Gn} with a given degree sequence.

5.3 Useful auxiliary results

In this section, we formulate several auxiliary theorems and lemmas which are used
in the rest of the paper.

The following theorem can be very useful when one deals with the regularly varying
distributions.

Theorem 11 (Karamata [6]) Let L be slowly varying and locally bounded in [x0,∞]
for some x0 ≥ 0. Then

(1) for α > −1

∫ x

x0
tαL(t)dt = (1 + o(1))(α + 1)−1xα+1L(x), x → ∞;

(2) for α < −1

∫ ∞

x
tαL(t)dt = −(1 + o(1))(α + 1)−1xα+1L(x), x → ∞.

We need the following notation:

Sn,c(x) =
n∑

i=1

ξ ci I [ξi > x] ,

S̄n,c(x) =
n∑

i=1

ξ ci I [ξi ≤ x] ,
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here c, x ≥ 0.
Karamata’s theorem allows to analyze the asymptotic behavior for Sn,c(x) and

S̄n,c(x). Namely, the following lemmas hold.

Lemma 1 (Ostroumova Prokhorenkova [36]) Fix any c such that 0 ≤ c < γ , any β

such that 1 < β < γ/c and β ≤ 2, and any ε > 0. Then for any x = x(n) > 0 such
that x(n) → ∞ we have

ESn,c(x) = γ

γ − c
n xc−γ L (x) (1 + o(1)), n → ∞,

P
(|Sn,c(x) − ESn,c(x)| > εESn,c(x)

) = O

((
xγ

n L (x)

)β−1
)

.

Further in this paper we refer to this lemma only with c = 0. In this case we can
take β = 2, since γ /c = ∞. Lemma 1 with c = 1 is needed to overcome some
technical difficulties which are omitted in this paper (see [36] for the full proofs). If
c = 1, then we have to chose some β such that 1 < β < γ .

Lemma 2 (Ostroumova Prokhorenkova [36]) Fix any c such that c > γ and any
ε > 0. Then for any x = x(n) > 0 such that x(n) → ∞ we have

ES̄n,c(x) = γ

c − γ
n xc−γ L (x) (1 + o(1)), n → ∞,

P
(|S̄n,c(x) − ES̄n,c(x)| > εES̄n,c(x)

) = O

(
xγ

n L (x)

)

.

We need two more lemmas. Put ξmax = max{ξ1, . . . , ξn}.
Lemma 3 (Ostroumova Prokhorenkova [36]) For any ε > 0 and any α > 0

P
(
ξmax > n

1
γ

−ε
)

= 1 − O(n−α).

Also, for any δ < γ ε

P
(
ξmax ≤ n

1
γ

+ε
)

= 1 − O(n−δ).

Lemma 4 (Ostroumova Prokhorenkova [36]) For any ε > 0 and any δ <
γε

γ+2

P
(
S̄n,2(∞) ≤ n

2
γ

+ε
)

= 1 − O(n−δ).

Above we present only the upper bound for S̄n,2(∞), since the lower bound can be
obtained using the lower bound for ξmax : S̄n,2(∞) ≥ ξ2max .
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5.4 Clustering in unweighted graphs

5.4.1 Existence

The behavior of the global clustering coefficient in scale-free unweighted (simple)
graphs was considered in [35,36]. In the case of an infinite variance, the reasonable
question is whether there exists a simple graph (i.e., a graphwithout loops andmultiple
edges) with a given degree distribution. As pointed out in [28], the probability of
obtaining a simple graph with a given degree distribution by random pairing of edges’
endpoints (configuration model) converges to a strictly positive constant only if the
degree distribution has a finite second moment. In other words, if the second moment
is infinite, then a random graph with a given degree distribution has loops or multiple
edges asymptotically almost surely. However, the following theorem holds.

Theorem 12 (Ostroumova Prokhorenkova and Samosvat [35]) For any δ such that
1 < δ < γ with probability 1 − O

(
n1−δ

)
there exists a simple graph on n vertices

with the degree distribution defined in Sect. 5.2.

In order to prove this theorem, one can use Erdős–Gallai theorem.

Theorem 13 (Erdős and Gallai [20]) A sequence of non-negative integers d1 ≥ . . .

≥ dn can be represented as the degree sequence of a finite simple graph on n vertices
if and only if

(1) d1 + · · · + dn is even;
(2)

∑k
i=1 di ≤ k(k − 1) + ∑n

i=k+1 min(di , k) holds for 1 ≤ k ≤ n.

Let us order the realized values of the random variables ξ1, . . . , ξn and obtain the
ordered sequence d1 ≥ · · · ≥ dn . Using the lemmas from Sect. 5.3, it is not hard
to check that the conditions of Erdős–Gallai theorem hold for this sequence with
probability 1 − O(n1−δ). Therefore, Theorem 12 holds.

So, with high probability a graph Gn with the required degree distribution exists
and it is reasonable to discuss its global clustering coefficient.

5.4.2 Upper bound

In this section, we discuss the following surprising fact: with high probability the
global clustering coefficient for a sequence of graphs discussed in Sect. 5.2 tends to
zero. Since Sect. 5.2 basically describes all graphs with an infinite variance of the
power-law degree distribution, the obtained result contradicts a common belief that
for many real-world networks the global clustering coefficients tends to a non-zero
limit as the networks become large.

Theorem 14 (Ostroumova Prokhorenkova [36]) For any ε > 0 and any α such that
0 < α < 1

γ+1 with probability 1 − O(n−α) the global clustering coefficient of Gn

satisfies the following inequality

C1(Gn) ≤ n− (2−γ )
γ (γ+1) +ε

.
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Given the auxiliary results from Sect. 5.3, the proof of Theorem 14 is quite simple.
Therefore, to provide a complete picture of the problem, we repeat this proof here.

Proof By the definition, the global clustering coefficient is C1(Gn) = 3·T (n)
P2(n)

, where
T (n) is the number of triangles and P2(n) is the number of pairs of adjacent edges in
Gn .

Since P2(n) ≥ ξmax (ξmax − 1)/2, from Lemma 3 we get that for any δ > 0 with
probability 1 − O(n−α)

P2(n) > n
2
γ

−δ
.

It remains to estimate T (n). The following observation is crucial for the proof. For
any x

T (n) ≤ |{i : ξi > x}|3 +
∑

i :ξi≤x

ξ2i . (10)

The first term in (10) is the upper bound for the number of triangles with all vertices
among the set {i : ξi > x}. The second term is the upper bound for the number of
triangles with at least one vertex among {i : ξi ≤ x}.

From Lemmas 1 and 2 we get

|{i : ξi > x}| = Sn,0(x) ≤ (1 + ε)n x−γ L (x) ,
∑

i : ξi≤x

ξ2i = S̄n,2(x) ≤ (1 + ε)
γ

2 − γ
n x2−γ L (x)

with probability 1 − O
(

xγ

n L(x)

)
.

Now we can fix x = n
1

γ+1 . So, with probability

1 − O

⎛

⎜
⎝

n− 1
γ+1

L
(
n

1
γ+1

)

⎞

⎟
⎠ = 1 − O(n−α)

we have

T (n) ≤ n
3

γ+1+δ
.

Taking small enough δ, we obtain

C1(Gn) ≤ nε− 2−γ
γ (γ+1) .

This concludes the proof. �
The obtained result is especially interesting due to the fact that in many observed

networks the values of both clustering coefficients are considerably high [33]. Note
that actually the observations from [33] do not contradict Theorem 14. There are
several possible explanations:
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• Large values of global clustering coefficient are usually obtained on small net-
works.

• For the networks with the power-law degree distribution the observed global clus-
tering is usually less than the average local clustering, as expected.

• Our results can be applied only to networks with regularly varying degree distri-
butions. If a network has, for example, a power-law degree distribution with an
exponential cut-off, then our results cannot be applied.

5.4.3 Lower bound

In the previous section, we presented an upper bound for C1(Gn). It is reasonable to
discuss the tightness of this upper bound.

Theorem 15 (Ostroumova Prokhorenkova [36]) For any ε > 0 and any α such that
0 < α < min{ γ ε

γ+2 ,
1

γ+1 , γ − 1} with probability 1 − O(n−α) there exists a graph
with the degree distribution defined in Sect. 5.2 and the global clustering coefficient
satisfying the following inequality

C1(Gn) ≥ n− (2−γ )
γ (γ+1) −ε

.

Theorem 15 implies that the upper bound obtained in Theorem 14 is tight up to
no(1) multiplier. In other words, we know how many triangles we can construct if we
fix a power-law degree distribution with 1 < γ < 2.

The proof of Theorem 15 is quite simple. Here we present only the main idea and
omit technical details. Recall that C1(Gn) = 3·T (n)

P2(n)
. The value P2(n) depends only

on the degree sequence and the upper bound for P2(n) follows from Lemma 4 (this

bound is of order n
2
γ ). Therefore, it remains to construct a graph with a large number

of triangles. It turns out that we can get enough triangles by constructing the largest

possible clique in our graph. Indeed, it is easy to show that n
1

γ+1 -th largest degree is

of order n
1

γ+1 . Therefore, the number of vertices in the largest possible clique is of

order n
1

γ+1 and it gives about n
3

γ+1 triangles. Combining this with the upper bound
for P2(n), we get the statement of the theorem.

5.5 Clustering in weighted graphs

In the previous section, we showed that with high probability the global clustering
coefficient for a sequence of simple graphs defined in Sect. 5.2 tends to zero. However,
it is also reasonable to study the global clustering coefficient for graphs with multiple
edges. This agrees well with reality: for example, the Web host graph has a lot of
multiple edges, since there can be several edges between the pages of two hosts.
Even in the Internet graph (vertices are web pages and edges are links between them)
multiple edges occur frequently.

There are several possible ways to define the global clustering coefficient for a
weighted graph. The following reasonable generalization of the global clustering coef-
ficient to multigraphs is proposed in [34]:
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C1(G) = total value of closed triplets

total value of triplets
.

A triplet is a group of three vertices u, v, w such that the pairs u, v and u, w are
connected. A triplet is called closed if v and w are also connected. Note that every
triangle consists of three closed triplets. There are several ways to define the value of
a triplet. First, the triplet value can be defined as the arithmetic mean of the weights of
two edges (u, v) and (u, w) that make up the triplet. Second, it can be defined as the
geometric mean of the weights of the edges. Third, it can be defined as the maximum
or minimum value of the weights of the edges. In addition to these methods proposed
in [34], the following natural definition of the weight is proposed in [36]: the weight
of a triplet is the product of the weights of the edges. This definition agrees with the
following property: the total value of all triplets located on a vertex is close to its degree
squared. In the case of multigraphs, the weight of an edge is equal to its multiplicity.

Further we assume that loops are not allowed. It can be proven that even with
this restriction it is possible to obtain an asymptotically constant global clustering
coefficient. The following theorem holds for any definition of the global clustering
coefficient C1(Gn).

Theorem 16 (Ostroumova Prokhorenkova [36]) Fix any δ > 0. For any α such that
0 < α <

γ−1
γ+1 with probability 1−O

(
n−α

)
there exists a loopless multigraph with the

degree distribution defined in Sect. 5.2 and the global clustering coefficient satisfying
the following inequality

C1(Gn) ≥ 2 − γ

2 + γ
− δ.

The formal proof of this theorem can be found in [36]. The main idea is the follow-

ing. Up to a slowly varyingmultiplier, the size of the largest possible clique is n
1

γ+1 . As
we already discussed, this clique can be constructed on the vertices of largest degrees.
Since we want to get as many closed triplets as possible, we not only construct a clique
on the vertices of largest degrees, but we construct a multiclique, i.e., we want these

n
1

γ+1 vertices to be connected only to each other. This gives us a lower bound 1
2 n

3
γ+1

(up to a slowly varying multiplier) for the total value of closed triplets. Now it remains
to get an upper bound for the total value of all triplets. This value consists of the total
value of closed triplets estimated above plus the total value of triplets located on the

vertices of small (less than n
1

γ+1 ) degrees. The latter value can be estimated by the sum

of squares of the degrees of these vertices, which is of order γ
2−γ

n
3

γ+1 . Altogether,
this leads to the statement of Theorem 16. Note that all the above estimates hold for
any definition of the weight of a triplet.

6 Conclusion

In this paper, we reviewed several recent results on preferential attachment models
and clustering coefficient analysis. The main aim was to cover general approaches to
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network analysis. It turns out that in some cases it is not necessary to fully specify a
random graph model in order to study its properties.

In particular, we presented a general class of preferential attachment models (PA-
class) defined in terms of constraints that are sufficient for the study of the degree
distribution. Then, we discussed the T-subclass, where an additional constraint is
added in order to be able to analyze the clustering coefficient. Finally, in Sect. 5, we
discussed the global clustering coefficient under only one constraint: we specified only
the degree distribution.

We believe that this paper will motivate further general studies of complex networks
and their properties.

Acknowledgments This work was supported by the Grant of RFBR No. 15-01-03530.
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